FANDOM


This page is about the skulls of all animals including humans. For information specific to the human skull, see Human skull. For other uses, see Skull (disambiguation).
"cranium" and "crania" redirect here. For other uses, see cranium (disambiguation).

Script error Script error Script errorScript error

The skull is a bony structure that forms the head of the skeleton in most vertebrates. It supports the structures of the face and provides a protective cavity for the brain.[1] The skull is composed of two parts: the cranium and the mandible. In the human these two parts are the neurocranium and the viscerocranium or facial skeleton that includes the mandible as its largest bone. The skull forms the anterior most portion of the skeleton and is a product of cephalisation—housing the brain, and several sensory structures such as the eyes, ears, nose, and mouth. These sensory structures are mostly part of the human facial skeleton.

Functions of the skull include protection of the brain, fixing the distance between the eyes to allow stereoscopic vision, and fixing the position of the ears to enable sound localisation of the direction and distance of sounds. In some animals such as horned ungulates, the skull also has a defensive function by providing the mount (on the frontal bone) for the horns.

The English word "skull" is probably derived from Old Norse "skalli" meaning bald, while the Latin word cranium comes from the Greek root κρανίον (kranion).

The skull is made up of a number of fused flat bones.

Humans

File:Caucasian Human Skull.jpg
For details and the constituent bones, see human skull, neurocranium and viscerocranium.

The human skull is the bony structure that forms the head in the human skeleton. It supports the structures of the face and forms a cavity for the brain. Like the skulls of other vertebrates, it protects the brain from injury.

The skull consists of two parts, of different embryological origin—the neurocranium and the facial skeleton (also called the viscerocranium). The neurocranium (or braincase) forms the protective cranial cavity that surrounds and houses the brain and brainstem. The facial skeleton is formed by the bones supporting the face. The neurocranium includes the mandible.

Except for the mandible, all of the bones of the skull are joined together by suturessynarthrodial (immovable) joints formed by bony ossification, with Sharpey's fibres permitting some flexibility.

Fish

File:FishKeyDay.jpg

The skull of fishes is formed from a series of only loosely connected bones. Lampreys and sharks only possess a cartilaginous endocranium, with both the upper and lower jaws being separate elements. Bony fishes have additional dermal bone, forming a more or less coherent skull roof in lungfish and holost fish. The lower jaw defines a chin.

The simpler structure is found in jawless fish, in which the cranium is normally represented by a trough-like basket of cartilaginous elements only partially enclosing the brain, and associated with the capsules for the inner ears and the single nostril. Distinctively, these fish have no jaws.[2]

Cartilaginous fish, such as sharks and rays, have also simple, and presumably primitive, skull structures. The cranium is a single structure forming a case around the brain, enclosing the lower surface and the sides, but always at least partially open at the top as a large fontanelle. The most anterior part of the cranium includes a forward plate of cartilage, the rostrum, and capsules to enclose the olfactory organs. Behind these are the orbits, and then an additional pair of capsules enclosing the structure of the inner ear. Finally, the skull tapers towards the rear, where the foramen magnum lies immediately above a single condyle, articulating with the first vertebra. There are, in addition, at various points throughout the cranium, smaller foramina for the cranial nerves. The jaws consist of separate hoops of cartilage, almost always distinct from the cranium proper.[2]

File:Anarhichas lupus skull Iles de la Madeleine.jpg

In ray-finned fishes, there has also been considerable modification from the primitive pattern. The roof of the skull is generally well formed, and although the exact relationship of its bones to those of tetrapods is unclear, they are usually given similar names for convenience. Other elements of the skull, however, may be reduced; there is little cheek region behind the enlarged orbits, and little, if any bone in between them. The upper jaw is often formed largely from the premaxilla, with the maxilla itself located further back, and an additional bone, the symplectic, linking the jaw to the rest of the cranium.[3]

Although the skulls of fossil lobe-finned fish resemble those of the early tetrapods, the same cannot be said of those of the living lungfishes. The skull roof is not fully formed, and consists of multiple, somewhat irregularly shaped bones with no direct relationship to those of tetrapods. The upper jaw is formed from the pterygoids and vomers alone, all of which bear teeth. Much of the skull is formed from cartilage, and its overall structure is reduced.[3]

Tetrapods

File:Tiktaalik skull front.jpg

The skulls of the earliest tetrapods closely resembled those of their ancestors amongst the lobe-finned fishes. The skull roof is formed of a series of plate-like bones, including the maxilla, frontals, parietals, and lacrimals, among others. It is overlaying the endocranium, corresponding to the cartilaginous skull in sharks and rays. The various separate bones that compose the temporal bone of humans are also part of the skull roof series. A further plate composed of four pairs of bones forms the roof of the mouth; these include the vomer and palatine bones. The base of the cranium is formed from a ring of bones surrounding the foramen magnum and a median bone lying further forward; these are homologous with the occipital bone and parts of the sphenoid in mammals. Finally, the lower jaw is composed of multiple bones, only the most anterior of which (the dentary) is homologous with the mammalian mandible.[3]

In living tetrapods, a great many of the original bones have either disappeared, or fused into one another in various arrangements.

Structure

Openings

File:AmphibSkeletons.png
File:Spinosaurus skull en.svg
File:Centrosaurus.JPG

Living amphibians typically have greatly reduced skulls, with many of the bones either absent or wholly or partly replaced by cartilage.[3] In mammals and birds, in particular, modifications of the skull occurred to allow for the expansion of the brain. The fusion between the various bones is especially notable in birds, in which the individual structures may be difficult to identify.

File:Massospondylus Skull Steveoc 86.png

The fenestrae (from Latin, meaning windows) are openings in the skull.

Ceratopsian dinosaurs may have fenestrae in their frills.

Temporal fenestrae

The temporal fenestrae are anatomical features of the skulls of several types of amniotes, characterised by bilaterally symmetrical holes (fenestrae) in the temporal bone. Depending on the lineage of a given animal, two, one, or no pairs of temporal fenestrae may be present, above or below the postorbital and squamosal bones. The upper temporal fenestrae are also known as the supratemporal fenestrae, and the lower temporal fenestrae are also known as the infratemporal fenestrae. The presence and morphology of the temporal fenestra are critical for taxonomic classification of the synapsids, of which mammals are part.

Physiological speculation associates it with a rise in metabolic rates and an increase in jaw musculature. The earlier amniotes of the Carboniferous did not have temporal fenestrae but two more advanced lines did: the synapsids (mammal-like reptiles) and the diapsids (most reptiles and later birds). As time progressed, diapsids' and synapsids' temporal fenestrae became more modified and larger to make stronger bites and more jaw muscles. Dinosaurs, which are diapsids, have large advanced openings, and their descendants, the birds, have temporal fenestrae which have been modified. Mammals, which are synapsids, possess no fenestral openings in the skull, as the trait has been modified. They do, though, still have the temporal orbit (which resembles an opening) and the temporal muscles. It is a hole in the head and is situated to the rear of the orbit behind the eye.

Classification

File:Chimpanzee skull.jpg

There are four types of amniote skull, classified by the number and location of their fenestrae. These are:

  • Anapsida – no openings
  • Synapsida – one low opening (beneath the postorbital and squamosal bones)
  • Euryapsida – one high opening (above the postorbital and squamosal bones); euryapsids actually evolved from a diapsid configuration, losing their lower temporal fenestra.
  • Diapsida – two openings

Evolutionarily, they are related as follows:

Bones

The jugal is a skull bone found in most reptiles, amphibians, and birds. In mammals, the jugal is often called the zygomatic bone or malar bone.

The prefrontal bone is a bone separating the lacrimal and frontal bones in many tetrapod skulls.

Terminology

Gallery

Script error

References

Template:Gray's

External links

Script error Script error


Script errorScript error

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.